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Abstract

The natural frequencies of a membrane-central core system are computed and compared with the
experimental data from a modified capacitive microphone excited by an electrostatic actuator in a vacuum
chamber under controlled temperature conditions. The observed frequencies confirm those from the
theoretical model to within t2%.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

As pointed out in Ref. [1], a remarkable dearth of literature exists on the effects of coupling
membranes to rigid objects. The author of that same reference offered a first approach to the
problem of the free vibrations of an annular membrane attached to a free, rigid core in its center
(historically, this question had previously been proposed as an exercise in Ref. [2]). Comparison of
the theory to the data from direct experimentation in this particular case appears non-existent,
although the setup discussed in Ref. [3] implicitly yields information about the asymptotic limits
of a relatively very massive and very small central core.
Beyond its evident intrinsic relevance, this system also has fundamental physics and engineering

interest, as it models the behavior of the membrane of a capacitive microphone loaded with a
small disk permanently cemented at its center. Such a modified microphone was used in a past
see front matter r 2005 Elsevier Ltd. All rights reserved.
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attempt to detect the van der Waals forces between the central disk and a facing surface [4]. This
effort produced initial promising results, but quantitative agreement with the predictions of
quantum-electro-dynamics was only partially satisfactory. We have undertaken a comprehensive
effort to greatly improve and expand on the general approach of this experiment by adopting,
however, a similar force-sensing strategy. The corner-stone of correct data interpretation in an
effort of this type is clearly a thorough understanding of the behavior of the membrane-disk
system above. However, the authors of Ref. [4] offered a very limited discussion of the dynamics
of their sensor, which may, at least in part, explain their partially unsatisfactory results.
Here, we report on the relevant facts of the theory of membrane oscillations in the presence of a

central rigid core and compare our predictions to our first experimental data, obtained as part of
the process of calibration of the sensor to be used in upcoming van der Waals force
measurements.
2. The effect of the central core on the natural frequencies of the membrane

In this section, we review the basic theory of annular membranes with a central core [1] and
expand on it to produce specific predictions of the natural frequencies of the system. The
governing equation of a membrane in polar coordinates in the absence of friction and external
forces can be written as

r2zðr; y; tÞ �
sM

TM

q2zðr; y; tÞ
qt2

¼ 0, (1)

where zðr; y; tÞ is the displacement from the position of equilibrium, r; y are the usual polar
coordinates, t is the time, and TM and sM are the membrane tension and surface density. Upon
the usual separation of variables, the radial solution reads

zðrÞ ¼ R0;1Jn

o
v

r
� �

þ R0;2Nn

o
v

r
� �

, (2)

where Jnðor=vÞ and Nnðor=vÞ are the Bessel and Neumann functions, respectively; v �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TM=sM

p
;

the constants R0;i are to be determined; and the overall solution is zðr; y; tÞ ¼ zðrÞTðtÞ, since we
shall not consider modes with na0.
The boundary condition at the fixed, outer rim of the membrane requires that

zðRMÞ ¼ R0;1Jn
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This can be satisfied for every order n and frequency o by choosing
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, (4)

which corresponds to the solution
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. (5)

In order to obtain the natural frequencies of the system, let us now consider the equation of
motion of the disk attached to the membrane in the hypothesis that such mass is placed exactly at
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the center. In the free vibration case, the only force acting on this central flat is due to its
interaction with the inner edge of the membrane and, in general, it is responsible not only for the
oscillation of the center of mass of the disk, but also for possible rotations that bring it away from
a plane parallel to the ðx; yÞ-plane [1]. Here, we shall restrict ourselves to modes that cause the disk
to only move parallel to the ðx; yÞ plane, that is, the disk will only accelerate along the z-axis in the
chosen reference frame with no rotation. Thus

Fnet;flat ¼ 2pRflatTM

qzðr; y; tÞ
qr

����
r¼Rflat

¼M flat
d2zflat

dt2
, ð6Þ

where M flat and Rflat are the mass and the radius of the flat disk, respectively. Since the outer edge
of the disk coincides with the inner radius of the annular membrane, we have the additional
geometric constraint that zflat ¼ zðRflat; y; tÞ ¼ zCðtÞ (Fig. 2) and thus €zflat ¼ €zðRflat; y; tÞ, or

2pRflatTM

qzðr; y; tÞ
qr

¼M flat
d2zðr; y; tÞ

dt2

����
r¼Rflat

. (7)

By assuming the harmonic dependence TðtÞ ¼ T0;1 cosotþ T0;2 sinot for the time part of the
solution,

2pRflatTM

qzðr; y; tÞ
qr

����
r¼Rflat

¼ �o2M flatzðRflat; y; tÞ. (8)

By making use of the recurrence relation Jnþ1 ¼ ðn=xÞJn � J 0nðxÞ (and similarly for the Neumann
functions) [5] to rewrite the above equation in terms of the solution at Eq. (5), we finally obtain, if
n ¼ 0
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From Eq. (8), we can see that, if the mass of the central disk becomes relatively large, the inner
boundary is approximately fixed just as the outer one, which corresponds to the typical problem
of an annular membrane clamped at both boundaries. We can see above that, if
o2M flatb2pRflatTMo=v, or sflatb2TM=oRflatv ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TMsM

p
=oRflat, where sflat is the surface

density of the central disk (M flat ¼ pR2
flatsflat), the term at right-hand side can be neglected and we

obtain, in this limit of a very massive central core
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¼ 0. (10)

This indeed is the known equation for the modes of oscillation of an annular membrane fixed at
both its inner and outer radii [1,6].
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Let us now rearrange Eq. (9) as
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which shall be used below to interpret our experimental data.
3. Experimental investigation

3.1. Measurement setup

The experiment was carried out by means of a ‘‘half-inch’’ (nominal) condenser microphone,
model 7013 made by ACO PACIFIC, Inc. [7] (equivalent to Bruel and Kjaer Type 4134/4192)
coupled to a PS9200-2 channel power supply and a 4012 Preamplifier made by the same company.
The response of the microphone was studied by an electrostatic actuator approach similar to that
typical of capacitive microphones in air (see, for instance, Ref. [8, Chapter 15]). In our case, the
grounded microphone membrane is stimulated by applying a known potential at the desired signal
frequency between it and a 1

4
l flat surface, 1 in (2.54 cm) diameter metallic mirror. The mirror

substratum is 6061-T6 aluminum coated by a conducting, first surface layer of gold with a rms
surface roughness o175 (A.
Initially, the device was placed inside a vacuum chamber located on a vibration-dampening

table at ambient pressure. Inside the chamber, several manual translational and rotational
micrometers were used to establish the appropriate distance range between the microphone
membrane and the gold mirror (Fig. 1). The appropriate zero of this motion is determined by
establishing the contact point between the microphone membrane and the electrostatic actuator
where the output signal from the microphone breaks down. Additional, nanometer-level
positioning of the electrostatic actuator is available at all times via a piezoelectric nano-positioner
with a maximum range of motion of 65mm. Once the appropriate position settings are achieved
and after routing all electrical connections through a feedthrough plate, the vacuum chamber is
sealed and pumping is initiated until the pressure drops below Pchambero10�4 Torr. The response
of the microphone changes drastically as the pressure drops from ambient to its final value. As
expected, an overall decrease in background noise and the appearance of a marked resonant
behavior of the membrane are observed. In order to achieve additional environmental control, the
temperature of the vacuum chamber was automatically maintained at ð30:0� 0:5Þ �C via electrical
heaters.
As a first step, we explored the response of the free (no central core) membrane to a signal

containing both a DC and an AC component (the large DC component suppresses the
microphone response at twice the forcing frequency [8]). With reference to Fig. 2, typical values
used were: H0 ¼ 0:5� 10�3 m; V0 ¼ 25V; V0p ¼ 1V (see also Table 1).
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Fig. 2. Schematic diagram of the capacitive sensor and electromagnetic actuator.

Fig. 1. (a) Sensor inside the vacuum chamber and (b) equipment used for the experiment.
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A rough estimate of the membrane resonance frequency (� 21 kHz) was obtained by using an
FFT analyzer and a signal generator in sweep mode.
The dynamics of a microphone membrane undergoing forced oscillations due to a pressure of

the electrostatic type is extremely well understood [9,10]. What is important here is that the system
is expected to resonate sharply near its natural frequencies and that the response of the system
near resonance is adequately described by a Lorentz best-fit [11]. In our case, the resonance
frequency was found at ð21; 164:67� 0:02ÞHz with a quality factor Q ’ 526 or, equivalently, a
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Table 1

Properties of the capacitive sensor

Property Symbol Units Nominal Computed Observed

Microphone capsule

Outer radius Rmic 0.635

Free membrane

Radius RM cm 0:495ð¼ 78%RmicÞ

Thickness sM mm 3:0
Volume density rM g/cm3 8:027
Surface density sM g/cm2 — 2:408� 10�3

Fundamental nM ;0 Hz — — 21,164:67; QM;0 ¼ 526

Tension TM dyne/cm — 1:804� 106

Central core

Radius Rflat cm 0:125 0:131
Thickness Sflat cm 0:050
Volume density rflat g/cm3 2:201
Surface density sflat g/cm2 0:11

Electrostatic actuator

Radius Ract cm 2:54
Distance to membrane H0 cm 0:05

Membrane and core

Fundamental n0 Hz 6064:5 6064:55� 0:02; Q0 ¼ 497

First natural frequency n1 Hz 37,378:3 38,102:83� 0:07; Q1 ¼ 415

Second natural frequency n2 Hz 75,004:8 74,851:0� 0:5; Q2 ¼ 348

Fig. 3. Free membrane response: (a) large scale and (b) detail.
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relaxation time t ’ 0:156 s; in Fig. 3 are displayed the data within a wide range of the resonance
and, in the right inset, the data in its immediate vicinity and used for the Lorentz fit. The slight
shift to lower frequencies due to dampening in this case is �10�2 Hz and shall be neglected in what
follows.
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The fundamental frequency of the complete circular membrane constrained at its outer edge is
given by [8–11]

f 1 ¼
2:4048

2pRM

ffiffiffiffiffiffiffiffi
TM

sM

r
. (12)

With the values given for RM and the volume density rM of the 303 stainless steel used to
manufacture the membrane, it is immediate to obtain estimates of both its surface density and
tension (Table 1).
The next step was to install the flat disk onto the center of the membrane which acts as a free

core. In our case this is a 2.5mm diameter disk of fused silica (Corning 7980 of UV Grade),
0:50� 0:05mm thick, optically polished on the side facing the electrostatic actuator at 40=20
scratch/dig, o7 (A, flat to l=4 (Table 1 and Ref. [12]). The side permanently cemented to the steel
membrane of the capacitative sensor is ground to a finish. The process of installation was carried
out by means of a vacuum compatible, hardener/adhesive compound rated for pressures as low as
10�8 Torr. A mask was prepared by enlarging an already existing hole in the protective grid of the
microphone so that the small flat could be slipped through it. The procedure was monitored via a
microscope/CCD system for any further adjustments (Fig. 4).
From the practical standpoint, cementing the disk to the membrane presented us with the

following options: (1) to deposit only an extremely small amount of epoxy so that just the central
part of the flat disk would be effectively attached to the membrane; (2) to deposit more than
necessary and obtain some excess leakage to the sides. The former option would have resulted in a
‘‘cleaner’’ finished product, but with the resulting difficulty in characterizing the boundary
conditions under the disk itself. The latter option, which we chose, as shown in Fig. 4 (right),
resulted in an epoxied area larger than that of the flat itself because of the leaked excess, but it
yielded a sure bond to the membrane everywhere around the circumference of the disk. Digital
imaging of the finished process after the epoxy was cured allowed us to assess the effective values
Fig. 4. (a) CCD system; (b) microphone capsule and (c) cemented flat disk.
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to be used in our model. We also verified that the core was cemented off-center by � 2� 10�2 cm,
or within 2% of the diameter of the membrane (Table 1).

3.2. Experimental data

The same procedure as in the case of the free membrane was carried out once the membrane
and disk system had been reassembled in the vacuum chamber as previously described. By
proceeding with a thorough scan of the response of the system in both sweeping and manual
modes in the 0–100kHz region, the three following resonances were identified and characterized,
and their position determined from a nonlinear Lorentz-fit conducted by means of the ORIGIN
data analysis package [13]: n0;obs ¼ ð6064:55� 0:02ÞHz (Fig. 5, left and top middle inset),
n1;obs ¼ ð38,102:83� 0:07ÞHz (top right inset), and n2;obs ¼ ð74,851:0� 0:5ÞHz (bottom right inset),
respectively. The experimental errors on the frequencies thus obtained only reflects the best
estimate of the instrumental error and of that resulting from the Lorentz-fitting procedure under
conditions of ideal repeatability. In reality, the resonance frequencies are observed to fluctuate by
t102 Hz, ort2% of their average value over a period of hours, most likely due to the effect upon
the membrane tension of the temperature fluctuations of the apparatus. Under these conditions,
better estimates are obtained by gathering fewer resonance data within a relatively short time
dictated by experience (usuallyt15 min). For an example of the decreased quality in the case of a
larger data set acquired over a longer period of time, see the first natural frequency resonance
(Fig. 5, top right inset).
The magnitude of the response signal is not going to be addressed in the present model and will

be considered in detail elsewhere. However, it is appropriate to remark here that the average
Fig. 5. (a) Flat/membrane fundamental frequency and (b)–(d) first two natural frequencies.
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displacement of the membrane over its area at any time is smaller at higher frequencies because of
the oscillating radial nature of the solution at Eq. (5). Therefore, the output signal is observed to
become smaller for higher natural frequencies. This qualitatively explains the much higher
fundamental resonance peak (� 10mV) compared to that at the first natural frequency (� 1mV).
In the case of the second natural frequency, it was actually necessary to polarize the electrostatic
actuator to a voltage V0 ¼ 250V (as opposed to the value V0 ¼ 25V typically used) with an AC
signal V0p ¼ 5V (as opposed to a typical V0p ¼ 1V) in order to obtain relatively noise-free data.
By normalizing the observed second natural frequency resonance peak by a total factor of 50, we
find a response � 8mV. An additional factor that, in practice, contributes to relatively smaller
signals at higher resonant frequencies is the decrease in the quality factor Q and the corresponding
increase in the dampening of the membrane. This reflects the general rule that higher modes damp
out more rapidly than lower modes and that the dampening losses increase as the membrane
becomes more segmented [11].
4. Discussion and conclusions

In order to use the membrane-central core model to analyze our experimental data, a
Mathematica notebook [14] was coded to explore the behavior of Eq. (11) for realistic values of
our physical parameters. If the quantities TM , sM , Rflat, sflat, and RM are assigned, the solutions
can be given in graphical terms, as shown in Fig. 6, where the left-hand side of Eq. (11) is shown as
a function of o ¼ 2pn.
Substitution of the nominal parameters in Table 1 known from manufacturers’ specifications and

from our observations of the free membrane yields the following predicted resonant frequencies:
n0;comp ¼ 6071:9Hz, n1;comp ¼ 36,732:6Hz, and n2;comp ¼ 73,758:9Hz. These values are withint4%
of the observed values for the higher natural frequencies and within �0:1% for the fundamental
frequency. Agreement with observation improves remarkably by choosing the observed value of the
flat disk diameter and a thickness approximately 5% less than the nominal value, corresponding to
sflat ¼ 0:104g=cm3 (this is only half of the manufacturer’s own thickness tolerance). In this case, we
predict: n0;comp ¼ 6; 064:5Hz, n1;comp ¼ 37; 378:3Hz, and n2;comp ¼ 75; 004:8Hz. In the case of
n0;comp and n2;comp, these values are to within less than 0:2% of the observed values.
These minor parameter adjustments are certainly consistent with the uncertainties introduced

by the bonding process, the remaining temperature-related fluctuations, and additional errors due
Fig. 6. Showing the left-hand side of Eq. (11) and its zeroes.
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to such quantities as the nominal volume densities of both stainless steel and fused silica. The
frequency data of the membrane-flat disk system conform very closely to the expected values
computed from our model and they confirm the validity of Eq. (11).
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